CONSTANTS

Description	Value
Acceleration of gravity on Earth (g)	9.80 m/s ²
Speed of light in a vacuum (c)	$3.00 \times 10^8 \text{ m/s}$
Planck's constant (h)	$6.63 \times 10^{-34} \text{ J} \cdot \text{s} = 4.14 \times 10^{-15} \text{ eV} \cdot \text{s}$
Electron rest mass (m _e)	$9.11 \times 10^{-31} \text{ kg}$
Proton rest mass (m_p)	$1.67 \times 10^{-27} \text{ kg}$
Elementary charge (e)	$1.60 \times 10^{-19} \mathrm{C}$
Coulomb's constant (k_e)	8.99 × 10 ⁹ N•m ² /C ²
Boltzmann constant (k_b)	1.38 × 10 ⁻²³ J/K
Gas constant (R)	8.31 J/(mol•K)
Gravitational constant (G)	$6.67 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2$
Permeability of free space (μ_0)	$4\pi \times 10^{-7} \text{ T} \cdot \text{m/A}$
Avogadro's number (N _A)	6.02 × 10 ²³ particles/mole
Heat of fusion of water (L_f)	3.33 × 10 ⁵ J/kg
Heat of vaporization of water (L_v)	2.26 × 10 ⁶ J/kg
Specific heat of water (c_w)	4.19 × 10 ³ J/(kg•°C)
Density of water (ρ_w)	1.00 × 10 ³ kg/m ³

FORMULAS

Mathematics	Force and Motion
$C = 2\pi r$	$v_f = v_i + at$
$A=\pi r^2$	$x_f = x_i + v_i t + \frac{1}{2} a t^2$
$SA = 4\pi r^2$	$v_f^2 - v_i^2 = 2a(x_f - x_i)$
$V = \frac{4}{3}\pi r^3$	$x_{f} = x_{i} + v_{i}t + \frac{1}{2}at^{2}$ $v_{f}^{2} - v_{i}^{2} = 2a(x_{f} - x_{i})$ $a_{c} = \frac{v^{2}}{r}$ $\Sigma \mathbf{F} = m\mathbf{a}$
	$\Sigma F = ma$
(a, b) denotes a vector with an x-component of a	F = -kx
and a y-component of b.	$F \leq \mu N$
	$F = \frac{Gm_1m_2}{r^2}$ $\theta_f = \theta_i + \omega_i t + \frac{1}{2}\alpha t^2$
	$\theta_f = \theta_i + \omega_i t + \frac{1}{2} \alpha t^2$
	$\omega_f = \omega_i + \alpha t$
	$V = r_{\rm CO}$
	$a = r\alpha$
	$\mathbf{r}_{cm} = \frac{\sum m\mathbf{r}}{\sum m}$
	$I = \sum mr^2$
	$I = \sum mr^2$ $\tau = \mathbf{r} \times \mathbf{F}$
	$\Sigma \tau = I \alpha$
	$P = \rho g h$
	$F = \rho Vg$
	$A_1v_1=A_2v_2$
	$A_1 v_1 = A_2 v_2$ $P + \frac{1}{2} \rho v^2 + \rho g y = \text{constant}$

FORMULAS (continued)

Energy, Momentum	n, and Heat Transfer
-------------------------	----------------------

Electricity and Magnetism

$$W = Fd \cos \theta$$

$$P = \frac{\Delta W}{\Delta t}$$

$$KE = \frac{1}{2} mv^2$$

$$PE = \frac{1}{2}kx^2$$

$$p = mv$$

$$\Delta \mathbf{p} = \mathbf{F} \Delta t$$

$$\Delta \ell = \alpha \ell_0 \Delta T$$

$$Q = mc\Delta T$$

$$Q = mL$$

$$\frac{\Delta Q}{\Delta t} = \frac{kA\Delta T}{d}$$

$$PV = nRT$$

$$\frac{1}{2}m\overline{v^2} = \frac{3}{2}k_bT$$

$$\Delta E = Q - W$$

$$W = P\Delta V$$

$$e = \frac{T_h - T_c}{T_h}$$

$$KE = \frac{1}{2} I\omega^2$$

$$L = r \times p$$

$$L = I\omega$$

$$T_k = 273 + T_c$$

$$F = \frac{k_e q_1 q_2}{r^2}$$

$$\mathsf{E} = \frac{\mathsf{F}}{q_0}$$

$$PE = qV$$

$$V = -Ec$$

$$V = \frac{k_e q}{r}$$

$$R = \frac{\rho \ell}{A}$$

$$V = IR$$

$$R = \sum R_i$$

$$\frac{1}{R} = \sum \frac{1}{R_i}$$

$$P = IV$$

$$C = \frac{Q}{V}$$

$$C = \sum C$$

$$\frac{1}{C} = \sum \frac{1}{C_i}$$

$$F = qv \times B$$

$$F = /\ell \times B$$

$$B = \frac{\mu_0 I}{2\pi r}$$

$$B = \frac{\mu_0 NI}{\ell}$$

$$\varepsilon_{\text{ave}} = -\frac{\Delta \varphi}{\Delta t}$$

$$\varphi = B_{\perp}A$$

Waves, Sound, and Light	Modern Physics
$T = \frac{2\pi}{\omega}$	E = hf
$a = -\omega^2 x$	$E = \gamma mc^2$
$x = A \sin \omega t$	1
$T = 2\pi \sqrt{\frac{m}{k}}$	$\sqrt{1-\frac{v^2}{c^2}}$
$T = 2\pi \sqrt{\frac{L}{g}}$	$E = \gamma mc^{2}$ $\gamma = \frac{1}{\sqrt{1 - \frac{v^{2}}{c^{2}}}}$ $hf = \varphi + eV$ $\Delta x \Delta \rho \ge h$
$V = f\lambda$	$\Delta x \Delta p \ge h$
$v = \sqrt{\frac{T}{\mu}}$	$\Delta E \Delta t \ge h$
$v = \sqrt{\frac{\gamma RT}{M}}$	$p = \frac{h}{\lambda}$
$2L = n\lambda$, n is an integer	
$4L = n\lambda$, n is odd	
$n_1 \sin \theta_1 = n_2 \sin \theta_2$	
$n = \frac{C}{V}$	
$\frac{1}{f} = \frac{1}{s_i} + \frac{1}{s_0}$	
$M = \frac{h_i}{h_0} = -\frac{s_i}{s_0}$	
$d\sin\theta = m\lambda$	
$I = I_0 \cos^2 \theta$	

NOTES

Not all formulas necessary are listed, nor are all formulas listed used on this test.

In questions on electricity and magnetism, the term *current* refers to "conventional current" and the use of the right-hand rule is assumed.